欧美黑人又粗又大的性格特点,国产农村妇女aaaaa视频,欧美高清精品一区二区,好爽又高潮了毛片免费下载

鋰電池硅碳負極大爆發

鉅大鋰電  |  點擊量:0  |  2019年07月10日  

隨著燃料化石能源危機和全球溫室效應問題的加劇,發展新能源成為迫在眉睫的任務。新能源的發展必須依靠先進的儲能技術,其中鋰離子電池因其高能量密度、長循環壽命和高平均輸出電壓等優點已成為關注焦點。尤其在現今,消費電子類產品更新換代的加快、動力汽車產業的蓬勃發展、智能電網的迅速推廣以及其它技術領域需求擴大等更加促進了鋰離子電池產業的迅速發展。


負極作為其關鍵構成成分之一,直接決定了鋰離子電池的性能,目前市場上主要采用石墨類負極材料。然而,石墨類負極的兩個致命缺陷:低能量密度(理論比容量 372mAh·g–1)和安全隱患(“析鋰”現象)令其無法適用于動力電池。因此,尋找一種新型高容量、安全性好和長循環的材料來替換石墨類負極材料成為動力鋰離子電池進一步發展的關鍵。


硅因其超高比容量(理論值4200mAh·g–1)、低嵌鋰電位(300%),使活性材料粉化、電極內電接觸失效以及新固相電解質層SEI重復生成,最終導致循環性能迅速衰退。為改善硅負極循環穩定性,研究者們做了各種改性。


近年來,一種已經產業化的工業原料硅氧化物(SiOx,0


本文從SiOx的結構與電 化學儲鋰機制方面出發,介紹了SiOx的結構與電化學性能的關系,闡明了SiOx存在的主要挑戰問題,并歸納了近期研究者們對硅氧化物負極的主要改進思路,最后對 SiOx負極材料未來發展方向進行了展望。


1 SiOx結構


SiOx材料早在幾十年前就已被人們所認知并在許多功能性應用中實現商業化,如利用其半導體屬性而廣泛運用于各種光電子器件,之后才被運用于鋰離子電池負極材料。因為SiOx為一種無定形結構,且在SiOx中Si的化合價態存在多樣性(Si0、Si2+、 Si4+等),一些常規測試技術手段如X射線衍射 (XRD),X射線光電子譜(XPS)和X射線Raman 衍射等分辨率有限,僅能提供無定型SiOx的平均結構信息,因此,對于SiOx微觀結構的確定長期以來一直是個難題。隨著科技的不斷進步,對SiOx的結構認識也在不斷深入。


最早,出現有兩種經典的結構模型:隨機鍵合模型(Random-bonding,RB模型)和隨機混合模型(Random-mixture,RM模型)。其中RB模型指出SiOx的結構為一種由Si—Si鍵與Si—O鍵形成的連續隨機分布并貫穿整個網絡的單相結構;而RM模型則認為SiOx的結構是一種由超小范疇(<1nm)的Si和的SiO2混合物組成的雙相結構。



2003年,Wieder等提出了一種介于上述兩種模型的“界面團簇混合型”模型(Interface Clusters Mixture Model),如圖1所示。圖中黑色區域代表Si團簇,白色區域代表SiO2團簇,而介于二者之間的淺灰色區域為 SiOx過渡區域。該模型認為SiOx是由納米Si團簇、納米SiO2團簇以及環繞于二者之間的SiOx界面區域構成。該SiOx界面的結構與普通的超薄Si/SiO2界面層相當,但由于SiOx中Si及SiO2團簇尺寸小于2 nm, 而該界面區域的體積較大,因此不能忽視。


同年,Schulmeister研究組通過TEM對SiO進行研究,也得出同樣的結論,在無定型Si相和無定型SiO2相之間存在過渡區域,且約占據總含量的20%~25%。



最近,Akihiko研究組在配有同步高能X射線衍射(HEXRD)設備下,利用Angstrom束電子衍射技術(ABED)對無定型SiO結構進行表征。結果證明:除了理論上存在的無定型Si和無定型SiO2團簇之外,在Si/SiO2相界面區域確實存在SiO(Si:O比≈1:1) 相間邊界層。這一發現提供了令人信服的非晶一氧化硅原子尺度不均勻分布的實驗證據,此外,他們通過計算機模擬構建出了1種異質結構模型,如圖2所示, 內部部分對應于1 個非晶態的Si團簇,外部部分是非晶態的SiO2基質。藍色、紅色和綠色圓球分別表示非晶態SiO2中的Si和O以及Si簇中的Si,該模型很好地解釋了非晶SiO材料的獨特結構和性能。


2 SiOx儲鋰機制和電化學性能


由前面得知,SiOx并非由單一相組成,而是由許多均勻分布的納米級Si團簇、SiO2團簇以及介于Si/SiO2兩相界面之間的SiOx過渡相組成,因此其儲鋰機理非常復雜。Miyachi等發現SiO首次鋰化產物為 LixSi、鋰硅酸鹽和Li2O,其中部分鋰硅酸鹽具有可逆性。Jun Kyu Lee等認為SiO嵌鋰形成Li2O和LixSi,SiO2嵌鋰形成Li4SiO4和 LixSi。而Chen等認為SiO2嵌鋰過程中不僅形成Li4SiO4和LixSi,還形成Li2O和 Li2Si2O5。


Ohzuku等證明SiO在首次嵌鋰過程中形成 Li4SiO4 和 LixSi,其中有部分 SiO2不參與反應。Yamamura 等發現結晶性的SiO2不具備嵌鋰電化學活性。



2016 年,Yasuda 等運用Li-Si-O三元相圖,從熱力學角度分析了SiO 首次脫嵌鋰的演變過程,具體如圖3所示:(1)點①–⑦,初始階段SiO中的SiO2組分連續鋰化為 Li2Si2O5、Li2SiO3、Li4SiO4且與Si共存;(2)點⑦–?,Si連續合金化為Li12Si7、Li7Si3、Li13Si4并與Li4SiO4共存;(3)點?–?,Li4SiO4分解成Li13Si4和Li2O; (4)點?–?,Li13Si4逐步鋰化形成 Li22Si5并與Li2O共存;(5)點?,為鋰沉積過程。根據上述鋰化過程, 可以得出SiO 在不同平衡條件下的理論容量和首次充放電效率,平衡點?的理論容量和首次充放電效率分別為1480mAh·g–1和 70.9%,平衡點?的理論容量和首次充放電效率分別為 2 584 mAh·g–1和 81.0%,平衡點?的理論容量為3283 mAh·g–1、首次充放電效率為 84.4%。


SiOx負極材料的電化學性能與其儲鋰機制息息相關。Jung等通過第一性原理分子動力學模擬得出,在充放電過程中,Li2O基質環繞在LixSi核周圍可充當著鋰離子的快速擴散通道,因此嵌鋰時SiOx富含的Li2O基質能夠使其在循環和倍率性能方面最優化,此外,LixSi核周圍的Li2O和Li4SiO4基質還可以有效的緩沖體積膨脹。然而,Li2O和Li4SiO4相為惰性相,其產生消耗了電解液 以及從正極脫出的Li,且此過程不可逆,造成首次可逆容量的嚴重丟失。SiOx材料的電化學性能與其氧含量(x值)也密切相關,



Jang等探究了SiOx負極材料的電化學性能隨氧含量(x值)的變化,如圖4所示,隨著x值的增大,電極材料的循環穩定性增加,但是首次Coulomb效率和容量降低。 因此,概括來講,對于SiOx材料,其中的氧有利也有弊。一方面,隨著x值升高,電化學活性儲鋰相(a-Si)減少,不可逆相Li2O和 Li4SiO4增加,因此比容量逐漸下降,首次Coulomb效率降低;然而從另一方面來講,生成的不可逆Li2O相增加,動力學加快,并且伴隨著體積膨脹產生的應力得到有效 釋放,因此電化學性能得到提升。


3 SiOx存在的主要問題


3.1 SiOx循環性能的衰減


在硅/鋰合金化過程中,伴隨著巨大的體積效應。雖然O原子的存在會在原位生成惰性緩沖基質相,但是總體體積效應仍然較大,產生的機械應力會使得活性材料粉化并與集流體之間發生電接觸失效;另外,SiOx的本征電導率低,不利于材料電化學性能的發揮;此外,SiOx負極與有些電解液的匹配性也不是很好,易被鋰鹽分解產生的微量HF 腐燭等。由于以上因素的共同影響,最終導致了SiOx負極材料的循環性能嚴重衰減。


3.2 SiOx首次Coulomb效率低


在電池運行過程中,由于有機電解質熱力學的不穩定性,使其在低電位如負極工作電位處會發生分解而在電極表面形成固體電解質界面相(SEI),這種不可逆SEI的形成消耗了電解液和正極材料脫出的Li,導致活性正極材料容量的明顯損失和低的第一循環Coulomb效率(CE)。


與鋰離子嵌入式反應負極材料(如石墨)相比,SEI層的生成對于高容量合金化負極材料(包括硅基、錫基、金屬氧化物等)則更為嚴重。此外,在首次嵌鋰時,SiOx中的氧原子也會和電解液中的Li+發生不可逆反應生成惰性相的Li2O和Li4SiO4,再次加劇了其首次不可逆容量, 最終結果導致SiOx負極材料首效低的問題,從而嚴重制約了SiOx負極材料在高比能鋰離子電池中的應用。


4 SiOx負極材料的改性


由前面可知,雖然SiOx材料較單質Si擁有更好的循環穩定性,然而將其實際運用于鋰離子電池負極仍然存在較多問題。為了改善 SiOx負極材料的電化學性能,近年來研究者們進行了大量的工作對其進行改性和優化,歸納起來主要有以下幾部分:SiOx的歧化、與其它材料的復合、預留緩沖空間、預鋰化技術的運用以及其它改性措施。


4.1 SiOx的歧化


人們通常使用的固體SiOx是由無定型Si和各種價態的硅氧化物構成的,在高溫下,其熱力學性質非常不穩定,容易發生歧化生成 Si和SiO2。


Mamiya等研究發現,將無定型SiO置于 850℃惰性氣氛中高溫煅燒發生歧化反應,會形成平均粒徑為4~5nm的納米單晶硅,且隨著煅燒時間的延長,納米晶硅的數量逐漸增加,但顆粒尺寸保持不變。若升高煅燒溫度至1000 ℃以上,單晶硅的生成速率則迅速加快,顆粒尺寸也逐漸變大。在納米晶硅生成的同時伴隨著Si4+的逐漸增加,Si+、Si2+和Si3+的逐漸減少,其首次嵌鋰平臺逐漸向單質Si靠近,而SiOx的電化學性能逐漸提升。


Park等研究發現,SiOx負極材料在1000 ℃歧化后比在800℃歧化后具有更好的循環性和可逆性,生成的納米晶Si均勻分散在無定型SiOx基質中。但是將歧化溫度進一步提高到1200 ℃,則產物電化學性能開始下降,猜測原因是過量的Si4+無定型硅氧化 物的生成阻礙了Li+的傳輸。


同樣,Hwa等觀察到,在1200℃熱處理的歧化SiOx幾乎沒有容量,因為納米晶Si被無定型SiO2緊緊包圍而無法與Li+發生反應,但是在歧化后通過高能球磨方法可將納米晶Si和無定型SiO2暴露出來,并因此改善其電化學性能。


雖然歧化是一種可以通過改變SiOx中的化學成分和增強其內部緩沖基質進而提高其循環性能的有效方法,但是其仍需要進行進一步的外處理來“激活”,如高能球磨和刻蝕等來破壞其外部致密的無定型硅氧化物包覆基質,并將內部納米晶硅暴露出來。


4.2 與其他材料的復合


碳材料因具有穩定性好、體積變化小和導電性優異等優點而常被用于和SiOx復合。將碳材料作復合材料,首先可以提升SiOx的導電性,其次可充當惰性緩沖層減小其體積效應,此外,如最常用的手法碳包覆等還能有效的降低SiOx與電解液的接觸面積,從而提高Coulomb效率。


根據復合碳材料的不同,可將其概括為兩類:SiOx與傳統碳材料和SiOx與新型碳材料的復合。傳統炭材料比較常見,如有石墨、炭黑和無定形碳等。而新型炭材料則是后興起的具有特殊結構或功能碳材料,如碳納米管、碳納米纖維和石墨烯等。相對比,新型碳材料由于具備超大的比表面積和多維導電網絡, 對SiOx負極的電化學性能提升更為顯著。


另外,還可以將SiOx與金屬進行復合。一方面,金屬材料具有良好的導電性,可增強硅合金材料的動力學性能;另一方面,金屬可以充當支撐骨架,改善硅體積效應,因此能有效改善SiOx負極的電化學性能。


Miyachi等研究發現25%的Fe、Ti或Ni摻雜改性的SiO首次Coulomb效率得到顯著提 升,高達84%~86%,同時可逆脫嵌鋰容量得到提高,通過XPS測試表明金屬元素并不參與反應,但摻雜后的Si元素在可逆脫鋰過程中化合價變化波動大 (由0價到+4價再到 0價)。Tang等研究超精細Ni納米顆粒復合 SiO2時發現,Ni納米顆粒尺寸越小, SiO2/Ni的脫嵌鋰容量越高,且循環穩定性越好。當然還有一些其它材料復合,如 Zhang等通過球磨法制備出Sn2Fe@SiOx復合材料,大幅度提高了SiOx鋰化反應的可逆性,其首效高達78%,且在200 mA·g–1電流下,具有700 mAh·g–1的高穩定容量,Coulomb效率超過99%,在1000 mA·g–1的高倍率下超長壽命可超過1000個循環。


4.3 預留緩沖空間


SiOx在脫嵌鋰過程中仍然經歷了較大的體積膨脹,因此通過提供額外的自由空間如形成多孔或中空核-殼結構等,可有效地緩解其體積膨脹。此外,多孔開放的結構也有利于Li+的快速輸運,從而提高其倍率性能。


Lee等采用電偶置換反應和金屬輔助電化學蝕刻相結合的方法合成三維多孔SiO材料,首先通過電偶反應在SiO表面沉積起催化劑作用的納米銀顆粒,然后對沉積銀的SiOx顆粒進行電化學蝕刻,合成多孔SiO顆粒,該材料表現出優異的電化學性能,包括高的比容量(1520 mAh·g–1)、穩定的循環性能(50圈,1490mAh·g–1)和高的倍率性能(3C,74%)。與傳統的通過HF刻蝕SiO2從而得到多孔Si負極材料的方法相反,Yu等對經900℃熱歧化處理后的SiO進行NaOH 處理,結果是將晶體Si刻蝕而SiOx保留下來,從而得到了多孔SiOx材料,通過控制刻蝕時間可得到不同刻蝕程度的多孔SiOx材料,且該負極材料同樣也表現出優異的電化學性能,0.2C下循環100圈后,可逆容量 穩定在1240 mAh·g–1以上。


近期,Park等報道了一種通過油水模板法制備碳包覆多孔SiOx材料用于高容量儲鋰材料,該負極材料具有730 mAh·g–1的高容量同時擁有超高的循環穩定性即100次循環電極材料沒有明顯的尺寸變化。


雖然目前制備多孔SiOx的方法眾多,然而,可以系統規律性對多孔結構以及孔半徑及分布的控制還未成型,且通常對多孔或中空結構SiOx負極材料的制備步驟繁瑣,產量低,外加在去除模板或刻蝕過程中會造成部分結構的坍塌,因此對多孔SiOx的制備及商業化應用還需更深入研究,以便達到簡單 高效的制備目的。


4.4 預鋰化技術


鋰離子電池硅負極材料的預鋰化是彌補其表面形成固體電解質界面相(SEI)所造成的鋰損失的一種重要策略。對于SiOx負極材料,由于氧的引入加大了對電解質中和由正極材料釋放的鋰離子消耗,造成鋰的嚴重損失,因此預鋰化技術對于硅氧化物 (SiOx)負極材料的性能改善尤為顯著。


預鋰化技術概括來說可分為以下幾類:


(1) 簡單的物理混合,如Kulova等通過硅和金屬鋰在電解液中的直接接觸方法緩減硅負極首次不可逆容量損失;


(2) 穩定的金屬鋰粉,如Forney等在電池組 裝過程中,將穩定的鋰金屬粉末均勻的分散在硅碳負極極片表面,通過控制鋰金屬粉末的用量和調節壓力對高容量硅/碳納米管(Si-CNT)負極進行有效預鋰,他們用該方法消除了20%~40%次不可逆容量損失,并使得高能量密度NCA/Si-CNT 全電池在20%深度放電時達到>1000次循環;


(3) 短路法,如Kim等采用電接觸短路法對 SiOx(x~1)極片進行預鋰化,通過調節短路導線電阻及短路時間實現對首次Coulomb 效率的精確調控,研究發現100 ? 電阻短路30min可以使首次Coulomb效率從73.6%提升至 94.9%;


(4) 預鋰化添加劑,如Cui研究組采用冶金法使熔融Li與SiO或SiO2反應形成 LixSi/Li2O復合材料,由于Li—O鍵相比于Li—Si更穩定,Li2O包覆的LixSi具有高度的室溫穩定性,因此可作為高穩定性預鋰化添加劑用于與硅氧化物 負極材料復合提升首次充放電效率。最近,Cui組又研發了一種更簡便的方法將合成的Li22Z5合金和 Li22Z5-Li2O復合材料(Z=Si、Ge、Sn等)作為預鋰化試劑對相應地Ⅳ主族元素進行預鋰化,結果表明,此方法大幅度地降低首次不可逆容量的損失,令材料容量接近理論比容量。


雖然到目前為止擁有的預鋰化技術手段豐富多樣,但是仍然存在一定的問題。短接技術最為簡便,可精準調控預鋰化程度,但是其反應條件必須嚴格控制氧氣和水的含量,較適用于實驗室階段的應用而無法實現大規模應用。穩定的金屬鋰粉技術,可實現較大規模應用,但是也需要嚴格控制實驗條件,對儀器設備要求高,且存在一定的安全隱患,尤其是在金屬鋰粉的高速混料過程中。通過添加預鋰化添加劑可以有效提高 SiOx負極材料的首次Coulomb效率,但是傳統的預鋰化試劑存在可燃性較高、化學穩定性較差和與其他電極組成成分(如電解液、粘結劑以及其他添加劑等)相容性差等問題,容易導致安全隱患的發生。


近年來,高穩定性且高效新型預鋰化添加劑成為研究熱點,然而,對其穩定性和與其他材料的相容性還需進一步的提升,此外,其合成成本仍需進一步的降低。


4.5 其它改性措施


除活性材料之外,其它如導電劑、粘結劑和電解液等也是電池重要組成部分,對其他組分的改性也可以有效的改善SiOx負極的電化學性能。


SiOx材料電導率低,適量的導電劑可以保證電子通過電極片流通進入外電路從而極大地改善其電化學性能。和 SiOx電極材料一樣,導電劑也在一直不斷地進步,從最開始的零維點狀導電劑炭黑,到 后來的一維纖維狀的導電碳纖維和碳納米管,再到最近火熱的二維片狀石墨烯材料,更進一步的增加了電極材料顆粒之間的接觸,提高了導電性。近期有研究表明,某些特殊形貌的導電劑在電極片中可起到穩定電極結構的作用,且不同的電極體系可選 擇各自最適應的導電劑。


巨大的體積效應容易使SiOx基負極電極結構坍塌從而失去電接觸,粘結劑的使用可以有效的保證電極結構的完整性。傳統粘結劑聚偏氟乙烯(PVDF)與SiOx電極的工作性能很差,因此許多更加高效的新型粘結劑逐漸被人們研發和利用,如羧甲基纖維素鈉(CMC)、聚丙烯酸(PAA)、聚乙烯醇(PVA)和聚酰亞胺(PI)等,這些結合劑可通過與 SiOx表面的SiO2層形成牢固的氫鍵或共價鍵達到增強與負極材料的粘附和結合的效果,從而提高了循環壽命。


最近,許多更加優異的粘結劑被研發出來,如Wang等報道的高拉伸導電膠(CG),Munaoka等研發 的自愈聚合物(SHP),Zhu等研發的交聯丙烯酰胺 (c-PAM)等,更加高效地保證了SiOx材料的循環穩定性。


在充電過程中,電解質溶液的還原分解會導致SEI層的生長,不同的電解液添加劑直接影響所形成的SEI層物化性質(致密度、韌性和穩定性等)不同,因此研發高效的電解液添加劑對SiOx負極的電化學性能提升非常重要。目前使用較多一些電解液添加劑主要有雙氟磺酰亞胺鋰鹽(LiFSI)、氟代碳酸 乙烯酯(FEC)、碳酸次乙酯(EC)、碳酸亞乙烯酯(VC)和硅氧烷等,這些電解液添加劑可以在電極材料表面形成致密鈍化保護膜,如 LiF、Li2O、一些Li+導電鹽和含氟類聚合物等,從而改善電池的電化學性能。


雖然電解液添加劑的使用能顯著的提高SiOx負極材料的容量保持率和Coulomb效率,然而其在開路電壓下對電極材料的接觸動力學及其對結構影響的本質仍然令人費解,因此還需更進一步的探究。


5 結論與展望


SiOx材料是一種極具有潛力的鋰離子電池負極材料,提供高容量的超細納米Si團簇均勻分散在SiOx基質中,且在首次嵌鋰過程中,原位生成的Li4SiO4和Li2O惰性相包覆在納米Si團簇外圍,隔絕了Si與電解液的接觸,起到了緩沖體積效應和保護電化學活性的納米Si團簇的雙重作用,因此令其綜合具備高容量和長循環等性能。


SiOx 負極材料的電化學性能與x值緊密相關,隨著x值升高,一方面,電化學活性儲鋰相(a-Si)減少,生成的不可逆相Li2O和 Li4SiO4增加,因此比容量逐漸下降,首次Coulomb效率也逐漸降低;然而另一方面,隨著生成的不可逆Li2O相增加,動力學加快,伴隨著體積膨脹產生的應力得到有效釋放,因此電化學性能得到提升。


雖然SiOx負極材料具有很強的優勢,然而實現實用化水平仍然存在較多問題,最突出的有容量衰減嚴重和首次Coulomb效率低兩大問題。因此,為了進一步提高SiOx電極材料的實用性,大量的研究工作仍然迫切需求。


其一,簡化優化SiOx材料的改性方案并降低其合成成本;


其二,研發更加成熟和 實用的預鋰化技術;


其三,針對SiOx材料匹配出更加合適的導電劑,黏結劑和電解液添加劑等。


相關產品

  1. <form id="ejezu"></form>

  2. 主站蜘蛛池模板: 且末县| 国产女人和拘做受视频免费| 精品国产精品三级精品av网址| 免费国偷自产拍精品视频 | 精品夜夜澡人妻无码av| 甘孜| 国产精品av在线| 河北区| 上杭县| 长武县| 大渡口区| 国产午夜福利片| 翁牛特旗| 性生交大片免费看l| 泸定县| 国产探花在线精品一区二区| 慈溪市| 德保县| 久久久久国产一区二区三区| 平遥县| 国产麻豆成人传媒免费观看| 安阳市| 精品久久久久久| 国产欧美精品一区二区三区| 读书| 炉霍县| 日本理伦片午夜理伦片| 梓潼县| 国产亚洲精品久久久久久无几年桃| 黄龙县| 久久久久噜噜噜亚洲熟女综合| 国产午夜福利片| 中文在线资源天堂www| 久久久成人毛片无码| 精品国产乱码久久久久久影片| 97伦伦午夜电影理伦片| 成全电影在线| 亚洲日韩精品一区二区三区| 熟妇人妻一区二区三区四区| 少妇人妻丰满做爰xxx| 青草视频在线播放| 托里县| 精品无码一区二区三区的天堂| 人人爽人人爽人人爽| 亂倫近親相姦中文字幕| 马关县| 丹阳市| 宝应县| 宝清县| 少妇真人直播免费视频| 河津市| 国产成人精品无码免费看夜聊软件| 精品无码人妻一区二区三区| 久久国产精品波多野结衣av | 国产精品99精品无码视亚| 白山市| 久久久久亚洲精品| 西乌| 午夜精品久久久久久久| 狠狠人妻久久久久久综合| 全国最大成人网| 国产精品久久久久久久久久免费看| 久久亚洲国产成人精品性色 | 中文字幕乱码无码人妻系列蜜桃| 宝丰县| 日韩一区二区a片免费观看| 国产精品天天狠天天看| 阿巴嘎旗| 稻城县| 熟妇无码乱子成人精品| 乌拉特后旗| 高州市| 最新高清无码专区| 精品国产乱码久久久久久影片| 欧美疯狂做受xxxxx高潮| 襄樊市| 长沙市| 静安区| 双峰县| 延吉市| 成全观看高清完整免费大全 | 成人性生交大片免费卡看| 性生交大片免费看l| 乡宁县| 日日摸日日添日日碰9学生露脸 | 新兴县| 临沭县| 国产电影一区二区三区| 精品久久久久久| 亚洲精品97久久中文字幕无码 | 国产欧美日韩| 湖州市| 中文字幕乱码在线人视频| 包头市| 黄瓜视频在线观看| 大又大又粗又硬又爽少妇毛片| 国产精品久久777777| 色一情一区二| 邵东县| 国产麻豆剧传媒精品国产av| 欧美大屁股熟妇bbbbbb| 青冈县| 性生交大片免费看| 成全世界免费高清观看| 国产情侣久久久久aⅴ免费| 精品人妻无码一区二区三区蜜桃一| 精品无码一区二区三区| 芦溪县| 久久精品国产成人av| 欧美日韩精品| 国产成人精品av| 马公市| 成人欧美一区二区三区在线观看| 狠狠人妻久久久久久综合蜜桃| 孟村| 兴山县| 河池市| 绥棱县| 射阳县| 蒙城县| 哈密市| 奉节县| 博客| 久久久久噜噜噜亚洲熟女综合| 躁躁躁日日躁| 金溪县| 武强县| 国产免费无码一区二区 | 滁州市| 大田县| 久久久久亚洲精品| 日韩精品久久久久久免费| 翁牛特旗| 国产伦精品一区二区三区免费迷| 内射合集对白在线| 无码精品人妻一区二区三区湄公河| 汤阴县| 国精产品一区一区三区免费视频| 人妻饥渴偷公乱中文字幕| 国产真人无遮挡作爱免费视频| 丰满岳乱妇在线观看中字无码| 富阳市| √天堂资源地址在线官网| 国产精品99无码一区二区| 永宁县| 国精品无码人妻一区二区三区 | 躁躁躁日日躁| 亚洲色成人网站www永久四虎| 99久久久精品免费观看国产 | 国产精品成人va在线观看| 欧美激情综合色综合啪啪五月| 免费观看黄网站| 渑池县| 北宁市| 欧美日韩国产精品| 久久久无码人妻精品无码| 固原市| 禄丰县| 静宁县| 民丰县| 亚洲欧美一区二区三区| 亚洲高清毛片一区二区| 护士人妻hd中文字幕| 苗栗市| 周口市| 亚洲欧美国产精品久久久久久久| 岳阳县| 国产超碰人人模人人爽人人添| 吉木乃县| 稷山县| 久久99精品久久久久久| 成全视频免费高清| 上虞市| 青青草视频免费观看| 国产视频一区二区| 欧美与黑人午夜性猛交久久久| 国产午夜视频在线观看| 紫云| 国模无码视频一区二区三区| 塔河县| 思南县| 成全影视大全在线观看国语 | 谢通门县| 三年片免费观看了| 平果县| 阿克| 凤山县| 桃源县| 翁牛特旗| 性久久久久久久| 永安市| 灌阳县| 洞口县| 精品人妻少妇嫩草av无码专区| 邻居少妇张开腿让我爽了在线观看 | 汉沽区| 新干县| 新绛县| 文水县| 成全影视在线观看更新时间| 南投县| 嘉祥县| jzzijzzij亚洲成熟少妇| 乳源| 乐清市| 国产熟妇搡bbbb搡bbbb搡| 时尚| 国精品人妻无码一区二区三区喝尿| 精品国产av色一区二区深夜久久 | 色妺妺视频网| 尼玛县| 日产电影一区二区三区| 69久久精品无码一区二区| 中文字幕一区二区三区乱码| 久久久无码人妻精品无码| 欧美三根一起进三p| 国产精品久久久久影院老司| 熟妇人妻一区二区三区四区 | 亚洲精品久久久久久一区二区| 中文字幕日韩人妻在线视频| 无码人妻aⅴ一区二区三区69岛| 中文字幕乱码人妻无码久久| 横山县| 午夜精品国产精品大乳美女 | 淳安县| 中文字幕人妻丝袜乱一区三区| 成熟人妻av无码专区| 精品无码国产一区二区三区51安| gogogo在线高清免费完整版| 蜜臀av人妻国产精品建身房| 成人片黄网站色大片免费毛片| 色欲av伊人久久大香线蕉影院| 赫章县| 牙克石市| 亚洲の无码国产の无码步美| 修文县| 章丘市| 亚洲人午夜射精精品日韩| 谢通门县| 一本大道久久久久精品嫩草 | 国产又黄又爽的免费视频| 日本电影一区二区三区| 亚洲乱码国产乱码精品精大量| 五原县| 国产精品久久久久影院老司| 精品无码人妻一区二区免费蜜桃 | 无码人妻久久一区二区三区蜜桃 | 少妇人妻真实偷人精品视频| 长治市| 亚洲色成人www永久网站| 人妻aⅴ无码一区二区三区| 成全电影大全在线观看国语版高清 | 极品新婚夜少妇真紧| 中文字幕精品久久久久人妻红杏1 精品人妻无码一区二区三区 | 欧美亚洲一区二区三区| 乌鲁木齐县| 欧美人与性动交g欧美精器| 国产偷人爽久久久久久老妇app| 资讯| 偏关县| 成人做受黄大片| 延寿县| 三年成全在线观看免费高清电视剧 | 丝袜亚洲另类欧美变态| 亚洲色偷精品一区二区三区| 日韩精品一区二区在线观看| 欧美日韩精品| 精品国产乱码一区二区三区| 国产又猛又黄又爽| 枣强县| 飘雪影院在线观看高清电影| 伊宁市| 扶绥县| 巨野县| www国产亚洲精品| 永春县| 成人精品一区二区三区电影| 丰城市| 国内老熟妇对白hdxxxx| 荣成市| 尚义县| 欧美深性狂猛ⅹxxx深喉| 修文县| 潜江市| 亚洲精品一区二区三区不卡| 老司机午夜福利视频| 久久精品aⅴ无码中文字字幕重口| 吴旗县| 成av人片一区二区三区久久| 天堂网在线观看| 人妻少妇一区二区三区| 亚洲第一av网站| 国产农村妇女aaaaa视频| av电影在线观看| 久久精品99国产精品日本 | 国产免费视频| 政和县| 成全看免费观看| 锡林浩特市| 久久久久女教师免费一区| 丰满人妻妇伦又伦精品国产| 翁源县| 双江| 通山县| 青草视频在线播放| 国产精品久久久久久久久久| 广西| 上杭县| 湘潭县| 九江市| 三门县| 精品国产av色一区二区深夜久久 | 先锋影音av资源网| 欧美激情综合五月色丁香| 白朗县| 安化县| 深泽县| 国产一区二区三区免费播放| 精品久久久久久| 无码人妻久久一区二区三区蜜桃| 平江县| 亚洲精品一区二区三区在线| 内射无码专区久久亚洲| 昌黎县| 精品无码久久久久成人漫画 | 精品一区二区三区免费视频| 东港市| 久久久久久欧美精品se一二三四 | 日韩av无码一区二区三区| 河池市| 国产一区二区三区精品视频| 亚洲最大成人网站| 茂名市| 免费无码又爽又黄又刺激网站| 亚洲色成人www永久网站| 熟妇高潮精品一区二区三区| 国产69精品久久久久久| 热re99久久精品国产99热| 思南县| 熟女少妇内射日韩亚洲| 梧州市| 51国产偷自视频区视频| 白山市| 成人欧美一区二区三区| 资讯| 蜜桃久久精品成人无码av| 精品人妻午夜一区二区三区四区 | 吉安市| 乌鲁木齐市| 亚洲国产精品18久久久久久| 巫山县| 日本不卡高字幕在线2019| 永久免费看mv网站入口亚洲| 欧美裸体xxxx极品少妇| 白城市| 国产草草影院ccyycom| 河南省| 光山县| 狠狠干狠狠爱| 肥老熟妇伦子伦456视频| 成人欧美一区二区三区在线观看| 国产久久精品| 97人妻精品一区二区三区| 欧美性猛交xxxx免费看| 汾西县| 日韩人妻无码一区二区三区99 | 屏边| 巴林右旗| 亚洲精品久久久久国产| 无码人妻丰满熟妇奶水区码| 临海市| 国产精品久久久久久久久久久久人四虎| 象山县| 大地资源网在线观看免费动漫| 国产成人小视频| 老鸭窝视频在线观看| 宽甸| 播放男人添女人下边视频| 左贡县| 99久久人妻精品免费二区| 精品无码久久久久成人漫画 | 巫山县| 草色噜噜噜av在线观看香蕉| 班玛县| 精品久久久久久人妻无码中文字幕| 久久久久女教师免费一区| 赤城县| 少妇无码一区二区三区| 大战熟女丰满人妻av | 成全免费高清观看在线电视剧大全 | 日韩精品一区二区在线观看| 欧美色综合天天久久综合精品 | 久久久久久久97| 新疆| 性史性农村dvd毛片| 禄劝| 昌图县| 国产suv精品一区二区6| 云霄县| 日韩精品一区二区三区| 亚洲精品一区久久久久久| 无码一区二区三区在线| 国精产品一区一区三区mba下载 | 日本不卡三区| 航空| 丰满岳跪趴高撅肥臀尤物在线观看| 国产真人无遮挡作爱免费视频| 长治县| 男人添女人下部高潮全视频| 韩国三级hd中文字幕| 曲麻莱县| 特级做a爰片毛片免费69| 成全高清免费完整观看| 中国女人做爰视频| 拜城县| 欧美深性狂猛ⅹxxx深喉| 69久久精品无码一区二区| 丝袜亚洲另类欧美变态| 万盛区| 大姚县| 永寿县| 日韩av无码一区二区三区不卡| 亚洲精品一区国产精品| 国产精品白浆一区二小说| 熟女人妻一区二区三区免费看| 通渭县| jzzijzzij日本成熟少妇| 桦南县| 治多县| 灵山县| 无码一区二区三区视频| 亚洲无av在线中文字幕| 欧美freesex黑人又粗又大| 亚洲国产精品久久人人爱| 巴中市| 成安县| 国产婷婷色综合av蜜臀av| 汪清县| 中文毛片无遮挡高潮免费| 南漳县| 建阳市| 国产成人精品白浆久久69| 亚洲国产精品va在线看黑人| 葫芦岛市| 人妻体内射精一区二区三区| 国产精品二区一区二区aⅴ污介绍| 综合天堂av久久久久久久| 岢岚县| 亚洲码欧美码一区二区三区| 国产精品激情| 人妻无码一区二区三区| 无码人妻aⅴ一区二区三区| 白又丰满大屁股bbbbb| 精品乱码一区二区三四区视频| 北票市| 国产精品久久久久久亚洲色| 青青草原亚洲| 欧美俄罗斯乱妇| 天堂资源最新在线| 国产精品高清网站| 免费观看一区二区三区| 宜都市| 日韩免费视频| 波多野结衣人妻| 欧美 日韩 人妻 高清 中文| 日日干夜夜干| 国产农村妇女aaaaa视频| 延津县| 沿河| 国产精品天天狠天天看| 国产麻豆剧果冻传媒白晶晶| 深水埗区| 高淳县| 周宁县| 国内老熟妇对白hdxxxx| 成人综合婷婷国产精品久久| 国产无套内射普通话对白| 和龙市| 99热在线观看| 真实的国产乱xxxx在线| 国产无套精品一区二区| 国产精品久久久久久久久久久久午衣片| 内射干少妇亚洲69xxx| 国产精品亚洲lv粉色| 苍井空亚洲精品aa片在线播放| 97精品国产97久久久久久免费| 亚洲乱码国产乱码精品精| 寻乌县| 国产伦精品一区二区三区妓女下载 | 顺义区| 国产精品久久久久久久9999| 常熟市| 国产日产久久高清欧美一区| 午夜时刻免费入口| 商南县| 人妻少妇一区二区三区| 清水县| 中国免费看的片| 东阿县| 孟连| 普兰县| 秋霞在线视频| 天天爽天天爽夜夜爽毛片| 国产精品丝袜黑色高跟鞋| 久久天天躁狠狠躁夜夜躁2014| 国产精品久久久久久久免费看| 无码人妻精品一区二区蜜桃色欲| 和林格尔县| 福海县| 大荔县| 噶尔县| 怀远县| 长海县| 麻豆乱码国产一区二区三区| 国产农村妇女精品一二区| 强行无套内谢大学生初次| 大邑县| 日本不卡一区| 三年高清片大全| 狠狠躁日日躁夜夜躁2022麻豆| 辉县市| 国产精品美女久久久久| 在线观看的网站| 亚洲精品字幕在线观看| 国产绳艺sm调教室论坛| 通辽市| 日韩一区二区三区精品| 亚洲色成人www永久网站| 97香蕉碰碰人妻国产欧美| 历史| 国产伦精品一区二区三区免费迷| 成人网站在线进入爽爽爽| 国产高潮国产高潮久久久| 欧美黑人又粗又大的性格特点 | 人人爽人人爱| 无码人妻精品一区二区蜜桃色欲| 无码一区二区波多野结衣播放搜索| 人妻饥渴偷公乱中文字幕 | 少妇高潮惨叫久久久久久| 8050午夜二级| 清丰县| 成人区精品一区二区婷婷 | a片在线免费观看| 马边| 中国女人做爰视频| 观塘区| 精品亚洲一区二区三区四区五区| 少妇精品无码一区二区三区| 欧美午夜精品久久久久久浪潮| 武夷山市| 临邑县| 内射合集对白在线| 五月天激情电影| 亚洲人成色777777精品音频| 欧美一区二区| 西西人体44www大胆无码| 东阳市| 男人扒女人添高潮视频| 邵武市| 国产女人18毛片水真多| 西宁市| 亚洲一区二区三区| 97精品人人妻人人| 德化县| 肥老熟妇伦子伦456视频| 高安市| 国产人妻精品一区二区三区| 宁城县| 国产精品一区二区久久国产 | 丰台区| 特黄三级又爽又粗又大| 成全在线电影在线观看| 师宗县| 无码一区二区三区免费| 国产午夜精品一区二区三区四区 | 新蔡县| 军事| 久久亚洲熟女cc98cm| 麻豆人妻少妇精品无码专区| 久久精品国产99精品国产亚洲性色 | 国产成人无码精品久久久露脸| 民乐县| 亚洲一区二区三区四区| 色视频www在线播放国产人成| 久久精品国产av一区二区三区| 国产欧美日韩一区二区三区| 免费特级毛片| а√天堂www在线天堂小说| 99精品欧美一区二区三区 | 岫岩| 欧美深性狂猛ⅹxxx深喉| 国产成人综合欧美精品久久| 少妇高潮惨叫久久久久久| 国产精品无码mv在线观看| 又大又长粗又爽又黄少妇视频| 免费无码又爽又黄又刺激网站| 日韩一区二区a片免费观看| 汾阳市| 日本特黄特色aaa大片免费| 男女无遮挡xx00动态图120秒| 通山县| 广宁县| 日韩精品视频一区二区三区| 欧美日韩在线视频一区| 亚洲精品久久久蜜桃| 丰城市| 无码少妇一区二区三区| 葫芦岛市| 亚洲成av人片一区二区梦乃| 宝应县| 国产女人高潮毛片| 欧美成人一区二区三区片免费| 大足县| 国产伦精品一区二区三区妓女下载| 靖州| 免费网站在线观看高清版电视剧 | 欧美午夜精品一区二区蜜桃| 天天干天天日| 日韩精品毛片无码一区到三区| √8天堂资源地址中文在线| 浙江省| 国产精品av在线| 成全视频大全高清全集在线 | 甘孜县| 亚洲精品国产精品国自产观看| 龙游县| 国产女女做受ⅹxx高潮| 遵义市| 99国产精品久久久久久久成人| 武山县| 成人无码视频| 精品人妻一区二区三区四区| 三原县| 新竹市| 久久成人无码国产免费播放 | 慈利县| 国产精品成人3p一区二区三区| 精品一区二区三区四区| 北安市| 滕州市| 孟津县| 沅陵县| 高安市| 沁水县| 仪陇县| 淮阳县| 太康县| 欧美性猛交xxxx乱大交| 贵港市| 博罗县| 在厨房拨开内裤进入毛片| 霍城县| 射阳县| 国产成人精品白浆久久69| 波多野42部无码喷潮在线| 兴安县| 亚洲精品字幕| 国产卡一卡二卡三无线乱码新区 | 少妇精品无码一区二区免费视频| 国产探花在线精品一区二区| 丽水市| 亚洲亚洲人成综合网络| 风韵少妇性饥渴推油按摩视频| 三年在线观看高清免费大全中文 | 达州市| 高潮毛片又色又爽免费| 国产婷婷色综合av蜜臀av| 大肉大捧一进一出好爽动态图| 三年大片大全观看免费| 精品一区二区三区免费视频| 亚洲最大成人网站| 随州市| 精品乱子伦一区二区三区| 少妇特黄a一区二区三区| 亚洲乱码国产乱码精品精| 国产精品无码免费专区午夜| 临泽县| 国产精品无码久久久久| 成全在线观看免费完整| 彰化县| 尚志市| 1插菊花综合网| 欧美三级欧美成人高清| 香蕉av777xxx色综合一区| 新和县| 江达县| 屏南县| 宁晋县| 国产精品久久777777| 扬中市| 东兴市| 色吊丝中文字幕| 精品人妻少妇嫩草av无码专区| 国模无码视频一区二区三区| 成全影院高清电影好看的电视剧 | 亚洲精品久久久久久动漫器材一区| 日日噜噜噜夜夜爽爽狠狠| 桐梓县| 成全电影大全在线观看国语版| 余庆县| 国产精成人品| 国产做爰xxxⅹ久久久精华液| 日韩精品无码一区二区三区 | 成全在线观看高清完整版免费动漫| 亚洲小说欧美激情另类| 肉色超薄丝袜脚交一区二区| 久久久久久免费毛片精品| 日本不卡高字幕在线2019| 全国最大成人网| 宽甸| 日本边添边摸边做边爱| 双流县| 人妻体内射精一区二区三区| 国产精品美女久久久久av爽| 永登县| 麻豆国产一区二区三区四区| 无为县| 桦甸市| 炎陵县| 少妇被又大又粗又爽毛片久久黑人| 孝昌县| 弥勒县| 祥云县| 马山县| 久久丫精品久久丫| 国产又爽又猛又粗的视频a片| 太谷县| 免费人妻精品一区二区三区| 欧美性猛交aaaa片黑人| 亚洲国产精品va在线看黑人| 一区二区三区国产| 国产精品久久久久久妇女6080| 巍山| 河北省| 国产一区二区三区免费播放| 沭阳县| 日韩人妻无码一区二区三区99| 扎兰屯市|